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 ABSTRACT 
 
 
The city of L’Aquila is built over a terraced alluvial basin filled by silt and silty-clay of lacustrine origin with 
average S-wave velocity of about 725 m/s, topped by a breccias unit (BrA) with Vs of about 900 m/s. Coupled with a 
reversal of velocity, there are marked lateral heterogeneities. In the southern area the stiff BrA unit laterally passages 
into softer deposits and is topped by red silt, i.e. LRCA, with an average velocity of 350 m/s. Bedrock is limestone 
and marls and its estimated maximum depth is of about 300-400 m. Recent geological and geophysical surveys 
performed during microzoning activities constrain this model. 
 
Throughout the city measurements of horizontal ground motion (SSR and HVSNR) show a marked low frequency 
peak (< 1 Hz), with variable amplitude reaching its maximum in the southern area. However amplification level 
often exceeds two over the 2-10 Hz frequency range. Vertical ground motion has a remarkable peak at frequency 
higher than the horizontal one.  
 
Bordoni et al. [2011] in their simulation work have shown that: 1) the velocity reversal filters out the high frequency 
content and 2) synthetic Rayleigh waves can predict the vertical ground motion amplification. Here we further our 
investigations on 2D ground motion focusing on the behavior of lateral heterogeneity in the BrA layer coupled to 
reversal of velocity. Synthetic spectral ratios from 0° and 90° incidence angle from SH waves are compared to 
observations from sites investigated by the microzoning portable network.  
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INTRODUCTION AND MODEL DESCRIPTION 
 
Experimental and modeling approaches fulfill complementary needs in the assessment of the soil response to ground 



 

motion. Geophysical measurements and geological mapping contribute to build a geological model which will have 
some pitfalls, due to measurement failures on one side and unavoidable use of interpretation on the other side. The 
more complex the stratigraphical setting becomes the more likely are the uncertainties in the model. Therefore the 
best way to test a model, with the aim of refining and improving it, is to run seismic wave propagation simulations 
and check whether they can predict independent measurements. We have pursued this approach at the city of 
L’Aquila, where following the normal faulting Mw = 6.3 April 6th 2009 earthquake a wealth of geologic, 
seismologic, and geotechnical studies have been developed including those for microzoning purposes. 
  
The main shock initiated 2 km west of the city center at hypocentral depth of 9 km and the fault plane was directly 
below it. The fault plane solution was consistent with a NW trending normal-fault mechanism 
[www.bo.ingv.it/RCMT] matching the NW-SE striking extensional regime of the Central Apennines. The earthquake 
had a disastrous impact on the whole epicentral area resulting in high toll in human lives with 309 people killed. 
Most of the casualties occurred in the historic city center where several buildings collapsed including some recent 
reinforced concrete ones. Beside collapses, a big portion of public and residential buildings were declared unusable 
after a survey performed in the days following the event leaving sixty thousand homeless.  
 
L’Aquila is in the Aterno River valley, a long NW-SE valley surrounded by mountain ranges, with the highest relief 
of the Apennines chain, the Gran Sasso range, to the NE. The downtown is built over a terraced alluvial basin (Fig. 
1-2). The terrace is in contact with outcropping limestone to the north, while moving towards the south the terrace is 
superimposed on silt and silty-clay of lacustrine origin, LK, with average S-wave velocity of about 725 m/s, topped 
by a breccias unit, BrA, with attributed Vs of about 900 m/s. The thickness of the BrA formation ranges from tens of 
meters in the north to just a few meters in the southernmost part. The terrace surface gently dips to the SW, has some 
minor incisions filled by colluvial deposits and a major incision to where the Aterno river is flowing, of about 90 m 
depth at its lowest point below the terrace. On the opposite side of the asymmetrical valley the bedrock is marls. 
Coupled to the described superficial reversal of velocity, there are marked lateral heterogeneities due to the history of 
sedimentation. A new geological survey of the area [Gruppo di lavoro MS_AQ 2010] has recently highlighted that 
the BrA unit moving towards the SW along a NE-SW profile decreases its competence with the breccias being 
gradually substituted by gravels and sand in a delta-fan-like sorting manner. In addition, such deposition occurred for 
a while into a lake, while lately it has been subaerial with the formation of a fine residual deposit, the Limi Rossi del 
Colle dell’Aquila, LRCA, a red silt unit which tops the BrA unit (Fig. 1-2). The LRCA velocity-depth profile has 
been measured down-hole to 30 m (at S5) finding an average velocity of 350 m/s [Gruppo di lavoro MS_AQ 2010]. 
There is only one measurement of the depth to bedrock, which was reached at 190 m at the borehole S3 located in 
the Aterno River Valley [Amoroso et al. 2011]. Another 300 meters deep borehole drilled in the center of the city 
(S2) did not reach the bedrock. This is in agreement with gravimetry modeling that estimated a maximum depth in 
about 300-400 m [Amoroso et al. 2011]. 
 
In order to model the 2D behavior of the area, we have drawn two perpendicular cross-sections (Fig. 2) modifying 
the ones from Gruppo di lavoro MS_AQ [2010] to take into account the local geology in proximity to the 
seismographs of the portable network. The A-A’ profile (top panel) has a NE-SW strike. We have modeled the 
lateral heterogeneity inside the top layer, BrA, using a horizontal velocity gradient, which gives rise to a variable 
impedance contrast between the top two layers, excluding LRCA, in the range of 1.2-0.7 (Table 1). The lateral 
passage at the same topographic level to the fine, slow and thin LRCA deposits has been modeled using another 
layer with a different but constant velocity. The B-B’ profile (bottom panel) is a simple model with a surface reversal 
of velocity and has been chosen to study the depth to the bedrock along the NW-SE valley axis. 
 
We have simulated the 2D responses along these profiles for propagating SH waves with 0° and 90° incidence 
angles. We have chosen these angles because previous studies [Bordoni et al. 2010, 2011] have found that the model 
responses for these incidences are the end-member cases for the full 0° to 90° range. We have computed synthetic 
spectral ratios and compared them to the experimental ones derived from averaging many aftershocks covering a 
wide range of azimuths and distances, which were recorded by the microzoning portable network [Milana et al. 
2011]. 
 
Tables 1 and 2 list the mechanical properties of the soils and rocks used in the modeling. Note that in the AA’ profile 
we have introduced a horizontal S-wave velocity gradient in the BrA layer. This decreases the speed from 900 m/s in 
the NNE part of the model end to 500 m/s at the SSW truncation of the layer, directly below the LRCA layer, which 
has a constant velocity of 350 m/s. Profile BB’ has a vertical velocity gradient from 450 m/s to 650 m/s in the LVM 



 

unit, a silty unit of fluvial origin. Profile BB’ also has a marked artificial horizontal gradient for the attenuation 
quality factor in the BrA and LK layers added at the left-hand end of the model: this is a work-around option 
recognizing and compensating for the lack of basin pinch-out there that is required by the modeling algorithm. 
 
The A-A’ cross-section runs south-east of the cross-section modeled in Bordoni et al. [2011] along a similar strike 
(see Fig. 1). That study investigated the behavior of the velocity reversal in the top layer associated with the stiff 
Brecce de L’Aquila unit (BrA), using SH, P-SV and Rayleigh waves. The authors ran two different velocity-depth 
models for the same cross-section. The first model (SMTH) was topped by a stiff layer with about 2:1 impedance 
contrast with the underlying layer. In the second model (NORV) the top two layers were replaced with a single layer 
with the properties of the softer second layer. By having different properties in the top layer of the two models the 
effects of the heterogeneity in the near-surface geology were dealt with to first-order, focusing on the limits of the 
stiff BrA distribution. The NORV model more adequately describes the effect of the area close to the SW edge of the 
L’Aquila terrace, where BrA rocks gives way to LRCA. The SMTH model, on the other hand, better describes the 
effect of the area where BrA rocks are at the top of the stratigraphy. The authors found that sites closer to the SW 
L’Aquila terrace edge were matched better by the NORV model, while sites clearly on BrA, were matched better by 
the SMTH model. Bordoni et al. [2011] found the major amplification effects to be in the 0.5–1.5 Hz range, in 
agreement to De Luca et al. [2005]. 
 
 
2D MODELING 
 
The simulations have been performed using the impedance-operator-based numerical code described in Haines et al. 
[2004] and Hulme et al. [2004)]. This code for laterally varying media is formulated in the frequency–wavenumber 
domain and has many characteristics in common with the reflectivity technique for laterally uniform media [Kennett 
1983], including the reflectivity technique’s inherent accuracy. For both models, we have simulated propagation for 
SH waves with vertical incidence (0°) and horizontal (90°), incidence, with the latter entering the models from their 
right-hand sides. The incident waveform is a plane S wave with a delta-like time function. Seismograms have been 
generated every 20 m giving 250 synthetics for AA model (Fig. 3 a-b bottom panels) and 275 for BB model (Fig. 4 
a-b bottom panels). From these synthetics we have computed spectral ratios using as reference the synthetics at the 
basement site at the right-hand end of each model, corresponding to reference site AQ12 for profile AA’ (Fig. 1). 
Synthetics spectral ratios interpolated along the strikes of the models are shown for 0° incidence angle (Fig. 3a and 
4a top panel) and for the 90° incidence angle (Fig. 3b and 4b top panels). The low frequency peak is clear and also its 
dependence on basin thickness. It is also clear that for both incidence angles local waves are generated at diffracting 
points at the edge of the basin and at the sloping interfaces, and they travel back and forth interfering amongst 
themselves. The modeling also clearly shows that the soft LRCA deposits generate ‘entrapped’ high frequencies 
waves with high values of amplification being predicted. 
 
 
COMPARING EARTHQUAKE AND 2D SYNTHETIC SPECTRAL RATIOS  
 
 
Earthquake spectral ratios 
 
We quickly summarize the main characteristic of the horizontal ground motion as seen by earthquakes [Milana et al. 
2011]. Starting from the data presented in Milana et al. [2011], we have re-evaluated the standard spectral ratios 
(SSR) with the aim of reducing the standard deviations of the results, using a longer S-wave time windows and 
removing those events with poor signal-to-noise ratio. After data reprocessing the standard deviations are still high 
suggesting a dependence of SSR on distance and azimuth. Site AQ12 (Fig.1) is the reference site. At all sites there is 
a broad low frequency peak centered at about 0.7 Hz, which diminishes to levels near 1 at frequencies higher than 2 
Hz. The only exceptions along profile AA’ are sites AQ18 and AQ08 which show smaller amplitude at low 
frequency than other sites. The two horizontal components of earthquake spectral ratios at some sites are different 
(e.g. FAQ2 and NAPO) with the East-West component bigger than the North-South and factors reaching an average 
of 7. In the high frequency range some amplification is visible over the 2-10 Hz frequency band but without any 
clear sharp peak. The high frequency factors found at some sites (AQ08, SANT) may be related to very local features 
and are not easily modeled. Vertical ground motion (not shown) has a remarkable peak at higher frequency (1 Hz) 
than the horizontal peak. 



 

 
 
AA’ model: synthetics vs observed spectral ratio 
 
In Fig. 5 we have compared 2D synthetics spectral ratios from SH waves with vertical and horizontal incidence 
angles to earthquakes horizontal spectral ratios computed using AQ12 site as reference. 
 
Vertical Incident SH waves: At sites AQ08 and AQ07 and AQ03, NAPO, AQ01 (that is sites at both ends of the 
modeled basin) the synthetics spectral ratios frequency peak is at 0.7 Hz matching the earthquake spectral ratios. At 
all the other sites (AQ02, FAQ1, PAOL, FAQ2) over the deeper area of the basin the simulations predict a 0.5 Hz 
peak in contrast to the 0.7 Hz peak of the data. The amplification level at low frequency predicted by the 0° 
incidence simulation is typically less than the data average but is within one standard deviation at all sites, except 
AQ18. At the SW end of the model, where the earthquake amplification factor at 0.7 Hz reaches its maximum 
(NAPO), the amplitudes of the synthetic spectral ratios are substantially less than the data averages and roughly 
equal to the lower one standard deviation bounds. We have modeled the 1D response (not shown) at sites PAOL and 
FAQ2 for vertical incidence and obtained the same peak at 0.5 Hz with amplification factor very similar to the 2D 
one. It is interesting to note that for some sites (AQ02, FAQ2, AQ07) there are remarkable differences between the 
two incidence angles. 
 
Horizontal Incident SH waves: At sites PAOL to AQ03 synthetics spectral ratios match the 0.7 Hz frequency of the 
peak, while at sites AQ08 to FAQ1 the frequency of the predicted peak is slightly too low. The amplification level of 
synthetics spectral ratios match the average of observations at site PAOL, FAQ2 and NAPO, is of the same size as 
the lower one standard deviation bound at sites AQ01 AQ03, is of the same size as the upper one standard deviation 
bound at AQ02 and FAQ1, and overestimate the data at AQ08. In general the horizontal incidence waves perform 
better in fitting the frequency peak and amplitude of the data at all sites, except AQ18.  
 
To summarize 1D and 2D vertical incidence on one hand can explain some features of the NE sites but they fail to 
reproduce the main features of the middle and SW sites. The 2D horizontal incidence on the other hand predicts the 
low frequency effect at sites PAOL and FAQ2, in the middle of the profile, in terms of frequency peak and 
amplification level, but fails to reproduce the peak amplification values at sites closer to the terrace edges AQ01, 
NAPO, AQ03. 
 
At high frequency > 3Hz the 2D synthetics spectral ratios for both incidence angles predict high amplification factors 
matching the amplification level of the NE sites but overestimating the response of the SW sites. The SW sites are on 
the slow LRCA unit, however their predicted high amplification factors are not seen in the data. These 2D factors are 
always higher than those produced by 1D simulation for vertical incidence though the peaks predicted are very 
similar.  
 
 
BB’ model: synthetics vs observed spectral ratio 
 
Synthetic spectral ratios (Fig. 6) at sites AQ20 and AQ14, at the ESE end of model BB, have no similarity at low 
frequencies to earthquake spectral ratios but there is a match for the high frequency peaks. At sites VINC, AQ05, 
AQ06 and FAQ5 the low frequency peak of the data is matched by both incidence angles. At the SANT site the peak 
frequency of the low frequency amplification peak that the model predicts is too high. At high frequency there is 
general match between synthetics and earthquake spectral ratios, except at AQ05 where the 90° spectral ratios 
overestimate the amplification factor from data especially between 3-5 Hz.  
 
 
CONCLUSION 
 
We have modeled the response of two 2D cross sections to SH wave incidence at 0° and 90° and compared their 
synthetics spectral ratios to the earthquakes spectral ratios with the eventual aim of refining and improving the 
geological model. The geological feature that characterizes the AA’ model is lateral velocity variation inside theBrA 
layer which in some sectors give rise to inversion of velocity with the underlying LK layer. The B-B’ profile is a 



 

simple model with the near-surface reversal of velocity laterally uniform and has been chosen to study the depth to 
the bedrock along the NW-SE valley axis. 
 

1) For both geological cross-sections the 2D modeling can account for the main characteristics of the 
amplification at low frequency at most of the sites, though the high frequency features have to be improved 
and understood further. The agreement at low frequency is particularly good with horizontal propagation. 
Some mismatch still exists at the ends of both models, suggesting revision of the geological model is 
required, especially for profile BB’ at its ESE edge. 

2) The characterization of the S-wave velocity of the LRCA unit must be improved since the simulations 
predict frequency characteristics of the amplification factors not seen in the data. One of the reasons of this 
mismatch might be extreme heterogeneity of this deposit, inconsistent with it being a constant velocity layer 
(both laterally and vertically), and the heterogeneous properties would not be reliably characterized using 
drilling at a single site, which is all that is available at present. In other words, more geotechnical data is 
required. 

3) The high variability of the horizontal spectral ratios at sites along the cross-sections is reproduced at most 
sites using waves propagating at 0° and 90° incidence angles. At sites closer to the south-end of the l’Aquila 
terrace, along the AA’ profile, 2D modelling is not sufficient to account for all the variability and energy 
shown by data, suggesting that some of this variability may be due to 3D effects. 



 

 
Fig. 1. Geological map including location of seismographs, boreholes and cross sections modeled in this paper and 

in previous paper (dashed line) 
 

 
 

Fig. 2. Geological cross-sections 



 

a)  b)  
 

Fig. 3. AA’ model: Synthetics spectral ratios (top) and displacement time series (bottom) for 0° (a) and 90° (b) 
incident SH wave, the latter entering the model from the right-hand side. The bedrock reference is on that side for 

both angles of incidence. Mechanical parameters are in Table 1  
 

a)  b)  
 

Fig. 4. BB’ model: Synthetics spectral ratios (top) and displacement time series (bottom) for 0° (a) and 90° (b) 
incident SH wave, the latter entering the model from the right-hand side. The bedrock reference is on that side for 

both angles of incidence. Mechanical parameters are in Table 2 



 

 
 
Fig. 5. AA’ model: Synthetics spectral ratios in colored lines vs earthquakes horizontal with standard deviation all in 

black. Reference is at right-hand side of the model. Sites are listed from NE (AQ18) to SW (AQ03). 

 
 
Fig. 6. BB’ model: Synthetics spectral ratios in colored lines vs earthquakes horizontal with standard deviation all in 

black. Reference is at right-hand side of the model. Sites are listed from WNW (SANT) to ESE (AQ14). 



 

TABLES 
 
 

Table 1. Mechanical parameters for Profile AA’  
(Vs has a horizontal gradient in BrA)  

 
 

Layer 
Distance 

from  
x=0 

rho 
(g/cm3) 

Vs 
(m/s) 1/Qs Vp 

(m/s) 1/Qp 

0 1700 350 0.003 1000 0.006 
a 

5000 1700 350 0.003 1000 0.006 
0 1700 350 0.01 1000 0.05 LRCA 

5000 1700 350 0.01 1000 0.05 
0 2000 900 0.01 1800 0.005 

2438 2000 900 0.01 1800 0.005 
2477 2000 880 0.01 1800 0.005 
3188 2000 520 0.01 1800 0.005 
3227 2000 500 0.01 1800 0.005 

BrA 

5000 2000 500 0.01 1800 0.005 
0 1900 725 0.015 1800 0.03 LK 

5000 1900 725 0.015 1800 0.03 
Bedrock  2300 2500 0.005 3400 0.0025 

 
 
 

Table 2. Mechanical parameters for Profile BB’ 
(1/Q has a horizontal gradient on the left-hand side of the model; 

Vs has a vertical gradient in LVM: Vs* at top of layer, Vs^ at bottom of layer)  
 
 

Layer 
Distance 

from 
x=0 

rho 
(g/cm3) 

Vs 
(m/s) 1/Qs Vp 

(m/s) 1/Qp 

-1000 2000 900 10 1800 10 
376 2000 9000 0.01 1800 0.005 BrA 

4500 2000 900 0.01 1800 0.005 
-1000* 1900* 450* 0.0015* 1800* 0.003* 
-1000^ 1900^ 650^ 0.0015^ 1800^ 0.003^ 
4500* 1900* 450* 0.0015* 1800* 0.003* 

LVM 

4500^ 1900^ 650^ 0.0015^ 1800^ 0.003^ 
-1000 1900 725 10 1800 10 
376 1900 725 0.0015 1800 0.003 LK 

4500 1900 725 0.0015 1800 0.003 
Bedrock  2300 2500 0.005 3400 0.0025 
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